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Abstract. The objectives of this research were to determine the variation of chemical composition across 
botanical fractions of cornstover, and to use Fourier Transform Near-infrared (FT-NIR) techniques to 
qualitatively classify separated cornstover fractions, and develop calibration model for the quantitative analysis 
of chemical compositions of cornstover. Large variations of biomass chemical composition for wide calibration 
ranges were achieved by manually separating the cornstover samples into six botanical fractions, and their 
chemical compositions were determined by conventional wet chemical analyses, which proved that chemical 
composition varies significantly among different botanical fractions of cornstover. Husk, followed by rind and 
pith, has the highest sugar (glucan+xylan) content; node has the lowest sugar content. Based on FT-NIR spectra 
acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was 
employed to conduct qualitative classification of cornstover and Partial Least Square (PLS) regression was 
used for quantitative chemical composition analysis. SIMCA was demonstrated successfully in classifying 
botanical fractions of cornstover. The developed PLS models yielded root mean square error of prediction 
(RMSEP) of 1.058, 1.539, 0.987, and 1.435 for glucan, xylan, lignin, and ash, respectively. The FT-NIR 
techniques in combination with multivariate analysis are very useful to biomass feedstock suppliers, bio-
ethanol manufacturers, and bio-power producers. 
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Introduction 
Biomass feedstock composition determines the theoretical yield from a biochemical conversion 

process, and can thereby have a significant impact on conversion process economics.  Previous work 
(Thomas et al., 2001) demonstrated that cornstover composition could vary over a wide range that can 
change the Minimum Ethanol Selling Price (MESP) of bioethanol produced over a range of $1.04 – 
1.36/gallon, assuming all other process variables remain constant across feedstock batches. Thomas et al. 
(2001) concluded that individual corn plants do not have a uniform composition across different parts of 
the anatomy, and cornstover composition is highly variable and influenced by a wide variety of genetic 
and environmental factors. These observations of biomass variability will probably hold true for other 
feedstock materials, such as wheat straw, switchgrass and hybrid poplars. On the other hand, the major 
chemical constituents of biomass -- namely cellulose, hemicelluloses, and lignin that have distinctly 
different uses -- exist in botanical fractions of leaves, nodes and internodes with different concentrations. 
Physical pre-fractionation of botanical fractions of biomass concentrates higher value components, 
decreases bulk for wet separation processes, reduces drying costs, and improves transportation and 
utilization efficiencies of a voluminous, chemically diverse feedstock. 

It is difficult if not impossible to control the compositional variability of biomass feedstock. 
However, it is feasible to monitor the variability and accordingly adjust process parameters. Current 
methods for chemical characterization of biomass feedstock, process intermediates and residues are not 
applicable in a commercial setting because they are very expensive (labor intensive) and cannot provide 
analysis information in a time frame useful for process control. Recently, Hames et al. (2003) 
demonstrated that dispersive Near Infrared (NIR) Spectroscopy in reflectance mode with “projection to 
latent structures (PLS)” regression provided a rapid and accurate analysis of cornstover compositions. 
However, we found few research papers that apply Fourier Transform Near Infrared (FT-NIR) 
spectroscopy, a newer NIR technology, to biomass feedstock analysis. 

Three key factors determine a successful application of NIR techniques for fast chemical 
characterization—accurate and repeatable NIR spectral acquisition, reliable calibration data, and robust 
chemometric analysis. While FT-NIR has the advantage over dispersive NIR in the aspect of the first 
factor (Griffiths and Haseth, 1986), more work needs to be done to build up reliable calibration data and 
robust chemometric methods. Wide ranges of variation of calibrated chemical compositions are needed 
for a robust chemometric analysis. Diverse and unique calibration dataset will enhance calibration range 
and depth (Hames et al., 2003).  

Using FT-NIR spectroscopy and chemometric analysis, the objectives of this study are to: 

1.   determine the variation of chemical composition across botanical fractions of cornstover; 

2.   qualitatively classify separated cornstover fractions; 

3.   develop calibration model for the quantitative analysis of chemical compositions of cornstover. 

 
Materials & Methods 

Large variation of chemical composition for wide calibration ranges can be achieved by manually 
separating the samples into specific botanical fractions after their distinction in chemical composition is 
proven. This alternative solution breaks through the geographical and temporal limitation, and even 
endows researches some flexibility to prepare certain samples with desired compositional proportion. 
Furthermore, the research result will also provide justification to physical pre-fractionation of botanical 
fractions of biomass in order to make full use of agricultural residuals. For example, the botanical 
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fractions with higher glucan content should be selected as feedstock for fermentation, while those with 
high lignin content should be good feedstock for co-firing in a power plant. 

The cornstover (Dekalb 689) collected at Tennessee Agriculture Experiment Station was 
manually separated into six different botanic fractions, namely, nodes, leaves, internodal piths, internodal 
rinds, sheath and husks (Figure 1). 

 

 
Figure 1. Botanical fractions of cornstover 

 

A total of 29 cornstover samples were prepared. All the samples were ground with a Wiley Mini-
Mill (Thomas Scientific, Swedesboro, NJ) through a number 40 mesh sieve and put into a spinning 
sample cup. FT-NIR spectra were collected in the diffuse reflectance mode on a spectrometer (Excalibur 
3100, Varian Inc., Palo Alto, CA) equipped with a NIR integrating sphere (IntegratIRTM, PIKE 
Technologies, Madison, WI). Each spectrum is the average of 256 co-additions of scans while the sample 
is rotating. Kubelka-Monk conversion was applied automatically to the output spectra by the Varian 
Resolution Pro® software, since it yields the best result in the mode of diffuse reflectance (Dahm, 1995; 
Griffiths, 1995). The spectra cover a range of 10000~4000 cm-1 with a spectral resolution of 8 cm-1, 
generating 1558 data points. 

In near infrared spectroscopy, influence of compounds usually reflects throughout the whole 
spectrum region instead of only certain specific region. As a result, visual analysis of NIR spectra does 
not reveal fingerprints of chemicals in the near range (4000-10000 cm-1) as they are in the mid range 
(400-4000 cm-1), which means no significant peaks. However, a NIR spectrum is unique representation of 
a substance or a mixture. Signals from bonds such as C-O, C=O, O-H, and N-H, as well as the overlap of 
their first and second overtones are included within this region. The composition-informative spectra need 
to be combined with multivariate mathematical methods so that structural information can be extracted. 
Therefore, multivariate models are, besides being predictive, also useful in the interpretation of 
overlapping and wide overtone bands. 
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After FT-NIR scanning, conventional wet chemistry analyses were conducted following the 
Standard Biomass Analytical Procedures developed by the National Renewable Energy Laboratory 
(NREL). Figure 2, which is also a justification of FT-NIR analysis, summarizes and contrasts the wet 
chemistry analysis and FT-NIR processes. 
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Figure 2. Processes of wet chemistry analysis vs. FT-NIR fast analysis 

 
 Carbohydrates (glucan and xylan) were measured using a HPLC system (SD-200, Rainin 
Instruments, Woburn, MA) equipped with an evaporative light-scattering detector and a Prevail 
carbohydrate ES 50 column (MKIII, Alltech Associates Inc., Deerfield, IL). The ash content of the acid-
insoluble material was determined through combustion at 575ºC, and acid-insoluble lignin is found by 
mass balance. The acid-soluble lignin was determined using UV spectrophotometry (Varian Prostar 325 
UV-Vis Detector). Two repetitions were carried out for each corresponding FT-NIR test. 

 All the multivariate analyses of FT-NIR spectra for qualitative classification and quantitative 
chemical composition prediction were conducted using a commercial software Unscrambler v. 9.6 
(CAMO Software Inc., Woodbridge, NJ). Classification by Soft Independent Modeling of Class Analogy 
(SIMCA) was employed to do qualitative classification and Partial Least Square (PLS) regression was 
used for quantitative chemical composition prediction. 

 

Results &Discussion 
Wet chemistry analysis 
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The chemical compositions analyzed for each botanical fractions of cornstover are presented in 

figure 3. 
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Figure 3. Chemical composition (% w/w) by wet chemistry analyses 

 
It is evident from figure 3 that chemical composition varies significantly among different 

botanical fractions of cornstover. Husk, followed by rind and pith, has the highest sugar (glucan+xylan) 
content. On the other end, node has the lowest sugar content. Since husk, rind and pith all have 
comparatively high sugar content and comparatively easier to be separated, it is feasibly profitable for 
biomass suppliers to emphasize on these botanical fractions. Since rind and pith have similar chemical 
composition, treating them as whole inter-nodal fraction would simplify the manufacture process.  

 

Qualitative classification 
 Principle component analysis (PCA) of FT-NIR spectra showed promise to qualitatively classify 
biomass feedstock. Presented in figure 4, the score plot of PCA analysis shows that the six botanical 
fractions of cornstover can be differentiated by the first two principle components (PC). The repetitions of 
each botanical fraction cluster together, and the direction of the first PC approximates the increase of 
glucan concentration. 
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Figure 4. Score plot of PCA on FT-NIR spectra of cornstover fractions 

 
Based on the PCA analysis, a supervised classification method, Soft Independent Modeling of 

Class Analogy (SIMCA), was used to differentiate botanical fractions of cornstover. SIMCA focuses on 
modeling the similarities between members of the same class. A new sample will be recognized as a 
member of a class if it is similar enough to the other members; otherwise it will be rejected. This 
approach computes the distance of each observation from the model with respect to the known samples 
used to build the PCA models. Figure 5 shows the average model distances among the six botanical 
fractions. 

 
Figure 5. SIMCA model distance among the six botanical fractions with husk as the reference 

 

1st Principle Component—direction of glucan concentration increase 
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This model-to-model distance plot gives the degree of dissimilarity among models with husk as 
the reference. Sixty new FT-NIR spectra were collected, with 10 from each of the 6 botanical fractions to 
validate the SIMCA methodology. The spectral distinction among the 6 botanical fractions is so 
significant that without data pretreatment, SIMCA correctly classified all of the 60 new samples 
(α=0.05). Table 1 presents part of the classification table produced by the Unscrambler v. 9.6 (CAMO 
Software Inc., Woodbridge, NJ), in which a new sample to be classified is assigned a “*”, corresponding 
to the predicted botanical fraction as the header of the columns. 

 

Table 1. Classification result of testing samples by SIMCA  

 
 

This SIMCA classification method is useful in feedstock selection for a bioconversion plant, and 
it can also be a powerful tool in managing large varieties of biomass. SIMCA can also be conducted on 
the quality classification. 

 

Quantitative prediction of chemical composition 
Partial least square (PLS) regression was performed using the average of two repetitions from wet 

chemistry analysis as calibration data and the average of five corresponding FT-NIR repetitions as 
predictive variables. Full cross-validation was used to check how well the PLS model would perform for 
future samples and allow for estimation of the prediction error in future predictions. The full FT-NIR 
spectra including 1558 data points are shown in figure 6. 

 
Figure 6.  Original FT-NIR spectra of calibration samples. 
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Water vapor interference and light scattering effect are evident in figure 6. Therefore, data 
reduction and certain transformations appeared important for the succeeding PLS regression procedure. 
Two spectral regions (5134-5520cm-1, 7063-7271cm-1) were first zapped out of the spectra, because the 
water vapor generates random and irregular spectral signal in the two regions. Several data pretreatment 
methods were tested on the spectral dataset, including Multiplicative Scatter Correction (MSC), Standard 
Normal Variate (SNV), first derivative and second derivative. The second derivative method generated 
the best results and is also consistent with several previous studies (Czuchajowska et al., 1992; 
Tsuchikawa et al., 2003). Root mean square error of prediction (RMSEP) was used to evaluate the model 
quality. The predicted chemical composition vs. wet chemistry measurements as results generated by the 
PLS-regression procedure are presented in figure 7, together with PLS model statistics and regression 
lines. Figure 8 summarizes the results together with target line. 

 

 
 

 
Figure 7. Chemical composition (% w/w) predicted by FT-NIR techniques vs. measured by wet chemistry 
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Figure 8.  Overall results of FT-NIR/PLS analysis (predicted vs. measured in % w/w) 

For glucan, xylan and lignin, all the calibration data points scattered around the regression lines 
whose slope is very close to one. The RMSEP for these three chemicals are small, demonstrating the good 
predicting capability for these three major constitutes. However, the prediction of ash is not as accurate as 
the other three, with a slope of 0.8838 and RMSEP of 1.4354, relatively large compared to the average 
ash content. Controversial conclusions have been found in our literature review concerning the utilization 
of NIR in predicting ash content. The major concern is that NIR does not directly interact with most of 
the ash forming atom species (Lestander and Rhén, 2005), although successful application has been found 
in the literature for an organic substance (Woo et al., 1999). More research is needed to address this issue 
so that FT-NIR can be used to accurately predict ash content in biomass. 

 

Conclusion & Summary 
Fourier Transform Near Infrared spectroscopy together with multivariate analysis was applied to 

qualitatively classify separated cornstover fractions and quantitatively analyze chemical compositions of 
cornstover. It was found in this study that manual separation of botanical fractions of cornstover 
sufficiently created representative variation of chemical concentrations for multivariate analysis, which 
bypassed expensive and time-consuming collection of diverse sample throughout years and nationwide 
locations. This alternative sampling method makes biomass research more flexible and accessible to all 
the research groups. This study shows great potential of the application of FT-NIR spectroscopic 
technique in combination with chemometrics methodology in fast classifying biomass and measuring its 
chemical constitutes. 

SIMCA methodology was demonstrated as a reliable method in cornstover classification, even 
without FT-NIR data pretreatment. Although this study emphasized on classifying the botanical fractions 
of cornstover, the method can be extended to categorize biomass feedstocks by their heating value and 
fermentable sugar content, etc.. Rapid analysis method through PLS showed potential in predicting 
carbohydrates and lignin. At this era when cellulosic ethanol and biomass power are striding into the 
energy mainstream, a rapid biomass compositional analysis method that instantly provides information of 
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heating value, and contents of sugars, lignin, and ash, is in great demand for biomass feedstock suppliers, 
bio-ethanol manufacturers, and bio-power producers. 
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